1 | #!/usr/bin/python3 |
---|
2 | # -*- coding: utf-8 -*- |
---|
3 | import sys |
---|
4 | import os |
---|
5 | import subprocess |
---|
6 | import argparse |
---|
7 | import re |
---|
8 | import time |
---|
9 | import traceback |
---|
10 | from collections import namedtuple |
---|
11 | |
---|
12 | ENABLE_LOGGING = False |
---|
13 | |
---|
14 | # In the face of multiple screens with wildly different resolutions, there are |
---|
15 | # essentially two ways to approach the 'grid size'. |
---|
16 | # One is to take each screen and divide it into the same number of parts; so |
---|
17 | # you have a laptop screen, and it gets divided into a 4x4 gride, and you have |
---|
18 | # a 4K monitor, and it gets divided into a 4x4 grid. This gives you the same |
---|
19 | # size grid on both screens. |
---|
20 | # The other is to divide the laptop screen into a 2x2 grid, and the 4K monitor |
---|
21 | # into a 4x4 grid; this gives you similar size grid _cells_ on both screens. |
---|
22 | # On my laptop monitor, I find a 4x4 grid to be awkwardly small. So I think |
---|
23 | # aiming for similar sized grid cells is going to be the better approach. But |
---|
24 | # then again, I could see a 3x3 grid on the laptop being reasonable, and is a |
---|
25 | # significant improvement in flexibility. |
---|
26 | # |
---|
27 | # So. I think this boils down to 'we need a configuration file'... though I'm |
---|
28 | # not seeing a nice clean way to configure that... |
---|
29 | # screen geometry -> AxB grid |
---|
30 | # |
---|
31 | # We want windows to snap to the grid for their location, and for their size. |
---|
32 | # And we don't want windows to straddle screen boundaries. |
---|
33 | # So... we could generate all possible grid entities, then search them to find |
---|
34 | # the best target. |
---|
35 | |
---|
36 | # Eventually, I'll move this to a configuration file, likely YAML, but since |
---|
37 | # it's still in flux, just keep it here. |
---|
38 | # I might want to support doing a 3x3 grid when it's the laptop screen only, |
---|
39 | # but a 2x2 grid when it's with the 4k monitor |
---|
40 | CONFIG = { |
---|
41 | 'screen-grids': { |
---|
42 | # For a given screen, what grid to chop it into |
---|
43 | (1920, 1080): (2, 2), # Full HD |
---|
44 | (3840, 2160): (4, 4), # 4K UHD |
---|
45 | } |
---|
46 | } |
---|
47 | |
---|
48 | |
---|
49 | if ENABLE_LOGGING: |
---|
50 | LOG_FILE = open(os.path.expanduser('~/quicktile.log'), 'a') |
---|
51 | def LOG(message): |
---|
52 | message = message.rstrip() |
---|
53 | LOG_FILE.write("%s: %s\n" % (time.asctime(), message)) |
---|
54 | LOG_FILE.flush() |
---|
55 | else: |
---|
56 | def LOG(message): |
---|
57 | pass |
---|
58 | |
---|
59 | |
---|
60 | def get_active_window_id(): |
---|
61 | """gives the window ID of the currently active window""" |
---|
62 | task = subprocess.Popen(['xdotool', 'getactivewindow'], stdout=subprocess.PIPE) |
---|
63 | stdout, stderr = task.communicate() |
---|
64 | return int(stdout) |
---|
65 | |
---|
66 | |
---|
67 | class Point(namedtuple('Point', ('X', 'Y'))): |
---|
68 | def distance_squared(self, other): |
---|
69 | return (self.X-other.X)**2 + (self.Y-other.Y)**2 |
---|
70 | |
---|
71 | def __repr__(self): |
---|
72 | return "P(%s,%s)" % (self.X, self.Y) |
---|
73 | |
---|
74 | def __add__(self, other): |
---|
75 | summed = [s+o for s, o in zip(self, other)] |
---|
76 | return Point(*summed) |
---|
77 | |
---|
78 | def __sub__(self, other): |
---|
79 | diff = [s-o for s, o in zip(self, other)] |
---|
80 | return Point(*diff) |
---|
81 | |
---|
82 | def __mul__(self, factor): |
---|
83 | mul = [s * factor for s in self] |
---|
84 | return Point(*mul) |
---|
85 | |
---|
86 | def __rmul__(self, factor): |
---|
87 | return self * factor |
---|
88 | |
---|
89 | |
---|
90 | class Geometry(namedtuple('Geometry', ('X', 'Y', 'W', 'H'))): |
---|
91 | def distance_squared(self, other): |
---|
92 | return (self.X-other.X)**2 + (self.Y-other.Y)**2 |
---|
93 | |
---|
94 | def location_difference_squared(self, other): |
---|
95 | return (self.X-other.X)**2 + (self.Y-other.Y)**2 |
---|
96 | |
---|
97 | def size_difference_squared(self, other): |
---|
98 | return (self.W-other.W)**2 + (self.H-other.H)**2 |
---|
99 | |
---|
100 | def location_size_difference_squared(self, other): |
---|
101 | return (self.location_difference_squared(other), self.size_difference_squared(other)) |
---|
102 | |
---|
103 | def size_location_difference_squared(self, other): |
---|
104 | """size is more important than distance""" |
---|
105 | return (self.size_difference_squared(other), self.location_difference_squared(other)) |
---|
106 | |
---|
107 | def difference_squared(self, other): |
---|
108 | """returns square of distance between centers plus square of difference in size |
---|
109 | """ |
---|
110 | return self.center().distance_squared(other.center()) + self.size_difference_squared(other) |
---|
111 | |
---|
112 | def __repr__(self): |
---|
113 | return "G(%s,%s,%s,%s)" % (self.X, self.Y, self.W, self.H) |
---|
114 | |
---|
115 | def __add__(self, other): |
---|
116 | summed = [s+o for s, o in zip(self, other)] |
---|
117 | return Geometry(*summed) |
---|
118 | |
---|
119 | def __sub__(self, other): |
---|
120 | diff = [s-o for s, o in zip(self, other)] |
---|
121 | return Geometry(*diff) |
---|
122 | |
---|
123 | def __mul__(self, factor): |
---|
124 | mul = [s * factor for s in self] |
---|
125 | return Geometry(*mul) |
---|
126 | |
---|
127 | def __rmul__(self, factor): |
---|
128 | return self * factor |
---|
129 | |
---|
130 | def nw(self): |
---|
131 | return Point(self.X, self.Y) |
---|
132 | |
---|
133 | def se(self): |
---|
134 | return Point(self.X+self.W, self.Y+self.H) |
---|
135 | |
---|
136 | def center(self): |
---|
137 | return Point(self.X+self.W//2, self.Y+self.H//2) |
---|
138 | |
---|
139 | def left_center(self): |
---|
140 | return Point(self.X, self.Y + self.H // 2) |
---|
141 | |
---|
142 | def right_center(self): |
---|
143 | return Point(self.X + self.W, self.Y + self.H // 2) |
---|
144 | |
---|
145 | def top_center(self): |
---|
146 | return Point(self.X + self.W // 2, self.Y) |
---|
147 | |
---|
148 | def bottom_center(self): |
---|
149 | return Point(self.X + self.W // 2, self.Y + self.H) |
---|
150 | |
---|
151 | |
---|
152 | class Window(object): |
---|
153 | def __init__(self, id, desktop, X, Y, W, H, client, title): |
---|
154 | self.id = int(id, 16) |
---|
155 | self.desktop = int(desktop, 10) |
---|
156 | self.X = int(X, 10) |
---|
157 | self.Y = int(Y, 10) |
---|
158 | self.W = int(W, 10) |
---|
159 | self.H = int(H, 10) |
---|
160 | self.client = client |
---|
161 | self.title = title |
---|
162 | |
---|
163 | def _geometry_frame_offset(self): |
---|
164 | """Returns a Geometry for adjusting for the window frame. |
---|
165 | """ |
---|
166 | # Normal maximized: |
---|
167 | #_KDE_NET_WM_FRAME_STRUT(CARDINAL) = 0, 0, 24, 0 |
---|
168 | #_NET_FRAME_EXTENTS(CARDINAL) = 0, 0, 24, 0 |
---|
169 | # Not maximized: |
---|
170 | #_KDE_NET_WM_FRAME_STRUT(CARDINAL) = 4, 4, 28, 4 |
---|
171 | #_NET_FRAME_EXTENTS(CARDINAL) = 4, 4, 28, 4 |
---|
172 | # left border, right border, title bar, bottom border |
---|
173 | task = subprocess.Popen(['xprop', '-id', str(self.id), '_NET_FRAME_EXTENTS'], stdout=subprocess.PIPE) |
---|
174 | stdout, stderr = task.communicate() |
---|
175 | left_border, right_border, title_bar, bottom_border = [int(v, 10) for v in stdout.decode().split('=')[-1].strip().split(', ')] |
---|
176 | return Geometry(-left_border, -title_bar, left_border+right_border, title_bar+bottom_border) |
---|
177 | |
---|
178 | def set_geometry(self, geometry): |
---|
179 | """Place a window at the given geometry, adjusting for window manager offsets. |
---|
180 | """ |
---|
181 | orig_geometry = self.geometry() |
---|
182 | if geometry == orig_geometry: # Avoid work if it's already where we want it |
---|
183 | LOG( "Geometry already at %s" % (geometry, )) |
---|
184 | else: |
---|
185 | LOG( "Setting geometry to %s" % (geometry, )) |
---|
186 | # NOTE: If the window is maximized, the xdotool will not be able to |
---|
187 | # move/resize the window, and will hang for 15 seconds. |
---|
188 | |
---|
189 | # We can detect a normal, maximized window: |
---|
190 | # _NET_WM_STATE(ATOM) = _NET_WM_STATE_MAXIMIZED_VERT, _NET_WM_STATE_MAXIMIZED_HORZ |
---|
191 | # Windows can have just one of those set, so we detect either |
---|
192 | task = subprocess.Popen(['xprop', '-id', str(self.id), '_NET_WM_STATE'], stdout=subprocess.PIPE) |
---|
193 | stdout, stderr = task.communicate() |
---|
194 | flags = set(stdout.decode().split('=')[-1].strip().split(', ')) |
---|
195 | LOG("flags=%r" % flags) |
---|
196 | if flags.intersection(('_NET_WM_STATE_MAXIMIZED_VERT', '_NET_WM_STATE_MAXIMIZED_HORZ')): |
---|
197 | LOG("DETECTED MAXIMIZED WINDOW") |
---|
198 | subprocess.check_call(['wmctrl', '-i', '-r', hex(self.id), '-b', 'remove,maximized_vert,maximized_horz']) |
---|
199 | time.sleep(0.10) # Give it a (longer) moment to resize |
---|
200 | # But KDE's "Quick Tile" feature does not set anything that xprop |
---|
201 | # displays, so it won't detect windows that have been "quick tiled". |
---|
202 | |
---|
203 | frame_offset = self._geometry_frame_offset() |
---|
204 | LOG("frame_offset=%s" % (frame_offset,)) |
---|
205 | offset_geometry = geometry - frame_offset |
---|
206 | # offset_geometry does not include the frame |
---|
207 | if self.client != 'N/A': # Bug workaround |
---|
208 | # For windows that have the hostname as the client instead of |
---|
209 | # 'N/A', when we set the geometry we have to provide the NW |
---|
210 | # corner _including_ the frame, but the width and height |
---|
211 | # _without_ the frame. |
---|
212 | offset_geometry += Geometry(frame_offset.X, frame_offset.Y, 0, 0) |
---|
213 | LOG("frame_offset fixup=%s" % (frame_offset,)) |
---|
214 | self._set_geometry(offset_geometry) |
---|
215 | new_geometry = self.get_geometry() |
---|
216 | if new_geometry == orig_geometry: |
---|
217 | # It didn't move. One of the ways this can happen is when KDE's |
---|
218 | # native quick tiling or maximizing is in use on a window. |
---|
219 | LOG( "Geometry unchanged; attempting to unmaximize") |
---|
220 | self.unmaximize() |
---|
221 | self._set_geometry(offset_geometry) |
---|
222 | new_geometry = self.get_geometry() |
---|
223 | if new_geometry != geometry: # The window manager is being a real pain |
---|
224 | LOG( "\007Failed to set geometry to %s using %s; wound up with %s instead" % (geometry, offset_geometry, new_geometry)) |
---|
225 | |
---|
226 | def _set_geometry(self, geometry): |
---|
227 | """Directly calls an xdotool command to size and move the window to the given coordinates. |
---|
228 | """ |
---|
229 | # Move vs size order matters. If shrinking, size then move. If growing, move then size. |
---|
230 | if geometry.W > self.geometry().W or geometry.H > self.geometry().H: # Growing |
---|
231 | cmd = ['xdotool', 'windowmove', '--sync', str(self.id), str(geometry.X), str(geometry.Y), 'windowsize', '--sync', str(self.id), str(geometry.W), str(geometry.H)] |
---|
232 | else: # Shrinking |
---|
233 | cmd = ['xdotool', 'windowsize', '--sync', str(self.id), str(geometry.W), str(geometry.H), 'windowmove', '--sync', str(self.id), str(geometry.X), str(geometry.Y)] |
---|
234 | start = time.time() |
---|
235 | subprocess.check_call(cmd) |
---|
236 | end = time.time() |
---|
237 | if end-start > 1: |
---|
238 | LOG("\007_set_geometry took %0.2fs" % (end-start)) |
---|
239 | time.sleep(0.05) # Without this sleep, xdotool will _sometimes_ fail to set the geometry. |
---|
240 | |
---|
241 | def geometry(self): |
---|
242 | return self._get_geometry() + self._geometry_frame_offset() |
---|
243 | |
---|
244 | def get_geometry(self): |
---|
245 | return self.geometry() |
---|
246 | |
---|
247 | def _get_geometry(self): |
---|
248 | task = subprocess.Popen(['xdotool', 'getwindowgeometry', str(self.id)], stdout=subprocess.PIPE) |
---|
249 | stdout, stderr = task.communicate() |
---|
250 | geoRE = re.compile('Window .*Position: (?P<X>-?[0-9]+),(?P<Y>-?[0-9]+) .*Geometry: (?P<W>[0-9]+)x(?P<H>[0-9]+)', re.DOTALL) |
---|
251 | match = geoRE.match(stdout.decode('utf-8')) |
---|
252 | result = dict((k, int(v)) for k, v in match.groupdict().items()) |
---|
253 | return Geometry(**result) |
---|
254 | |
---|
255 | def unmaximize(self): |
---|
256 | # Removing maximization is not sufficient; we have to add it and then |
---|
257 | # remove it to get it to un-maximize. Has the annoying side effect |
---|
258 | # when a window is 'KDE quicktiled' to a half or quarter of the screen |
---|
259 | # of maximizing the window for a brief flash before resizing to the |
---|
260 | # desired size. |
---|
261 | subprocess.check_call(['wmctrl', '-i', '-r', hex(self.id), '-b', 'add,maximized_vert,maximized_horz']) |
---|
262 | subprocess.check_call(['wmctrl', '-i', '-r', hex(self.id), '-b', 'remove,maximized_vert,maximized_horz']) |
---|
263 | time.sleep(0.05) |
---|
264 | |
---|
265 | def __repr__(self): |
---|
266 | return 'W(%s,%s,%s,%s,%s,%s,%s,%s)' % (self.id, self.desktop, self.X, self.Y, self.W, self.H, self.client, self.title) |
---|
267 | |
---|
268 | |
---|
269 | def get_current_windows(): |
---|
270 | task = subprocess.Popen(['wmctrl', '-l', '-G'], stdout=subprocess.PIPE) |
---|
271 | stdout, stderr = task.communicate() |
---|
272 | entry = re.compile('(?P<id>0x[0-9a-f]{8})\\s+(?P<desktop>[-0-9]+)\\s+' |
---|
273 | '(?P<X>-?[0-9]+)\\s+' |
---|
274 | '(?P<Y>-?[0-9]+)\\s+' |
---|
275 | '(?P<W>[0-9]+)\\s+' |
---|
276 | '(?P<H>[0-9]+)\\s+' |
---|
277 | '(?P<client>[^ ]+)\\s(?P<title>.*)', re.M) |
---|
278 | windows = [] |
---|
279 | for line in stdout.splitlines(): |
---|
280 | match = entry.match(line.decode('utf-8')) |
---|
281 | if not match: |
---|
282 | raise Exception("Failed to parse %r" % line) |
---|
283 | windows.append(Window(**match.groupdict())) |
---|
284 | return windows |
---|
285 | |
---|
286 | |
---|
287 | class Controller(object): |
---|
288 | def __init__(self): |
---|
289 | """Where grid is the number of cells in each direction on each desktop. |
---|
290 | KDE's default quick tiling is equivalent to grid=2. |
---|
291 | """ |
---|
292 | self.query_window_manager() |
---|
293 | self._calculate_geometries() |
---|
294 | |
---|
295 | def query_window_manager(self): |
---|
296 | self.current_windows = get_current_windows() |
---|
297 | self.windows_by_id = dict((w.id, w) for w in self.current_windows) |
---|
298 | self.active = get_active_window_id() |
---|
299 | |
---|
300 | def _generate_grid_cells_for_desktop(self, geometry, grid_x, grid_y): |
---|
301 | """Returns a set of Geometry objects for all possible grid placements |
---|
302 | on the given geometry, when divided into a grid_x-by-grid_y grid. |
---|
303 | """ |
---|
304 | grid_cells = [] |
---|
305 | for grid_left in range(grid_x): |
---|
306 | for grid_right in range(grid_left, grid_x): |
---|
307 | for grid_top in range(grid_y): |
---|
308 | for grid_bottom in range(grid_top, grid_y): |
---|
309 | left = geometry.X + geometry.W * grid_left // grid_x |
---|
310 | right = geometry.X + geometry.W * (grid_right+1) // grid_x |
---|
311 | top = geometry.Y + geometry.H * grid_top // grid_y |
---|
312 | bottom = geometry.Y + geometry.H * (grid_bottom+1) // grid_y |
---|
313 | width = right - left |
---|
314 | height = bottom - top |
---|
315 | grid = Geometry(X=left, |
---|
316 | Y=top, |
---|
317 | W=width, |
---|
318 | H=height) |
---|
319 | grid_cells.append(grid) |
---|
320 | return grid_cells |
---|
321 | |
---|
322 | def _splits_for_screen_size(self, width, height): |
---|
323 | _, closest = min(((width-w)**2 + (height-h)**2, (w, h)) for w, h in CONFIG['screen-grids'].keys()) |
---|
324 | splits = CONFIG['screen-grids'].get(closest) |
---|
325 | if not splits: |
---|
326 | splits = (2, 2) |
---|
327 | LOG("No split info found for %sx%s screen, defaulting to %sx%s" % (width, height, splits[0], splits[1])) |
---|
328 | return splits |
---|
329 | |
---|
330 | def _calculate_geometries(self): |
---|
331 | self.plasma_windows = [w for w in self.current_windows if w.desktop == -1] |
---|
332 | menubar = [w for w in self.plasma_windows if w.title == 'Plasma'][0] |
---|
333 | desktops = [w for w in self.plasma_windows if w.title.startswith('Desktop')] |
---|
334 | # KDE's logic for moving windows into a given location seems to think |
---|
335 | # that the menubar is on all desktops, and will refuse to move a window |
---|
336 | # down far enough to cover it, and will move the window if it is |
---|
337 | # resized enough to cover it. |
---|
338 | if False: |
---|
339 | # For now, I'm going to assume the menu bar is on the bottom of the screen. |
---|
340 | menubar_desktop = [w for w in desktops if w.X == menubar.X][0] |
---|
341 | other_desktops = [w for w in desktops if w != menubar_desktop] |
---|
342 | self.desktop_geometries = [ |
---|
343 | Geometry(menubar_desktop.X, menubar_desktop.Y, menubar_desktop.W, menubar_desktop.H-menubar.H), |
---|
344 | ] |
---|
345 | self.desktop_geometries.extend(Geometry(w.X, w.Y, w.W, w.H) for w in other_desktops) |
---|
346 | else: |
---|
347 | # So we're going to simply give up on the bottom 28px of the non-menubar screen, and act like it exists on all screens |
---|
348 | self.desktop_geometries = [Geometry(d.X, d.Y, d.W, d.H-menubar.H) for d in desktops] |
---|
349 | #LOG("Desktop geometries: %s\n" % self.desktop_geometries) # DEBUG |
---|
350 | |
---|
351 | self.grid_tiles = [] |
---|
352 | for desktop_geometry in self.desktop_geometries: |
---|
353 | x_splits, y_splits = self._splits_for_screen_size(desktop_geometry.W, desktop_geometry.H) |
---|
354 | self.grid_tiles.extend(self._generate_grid_cells_for_desktop(desktop_geometry, x_splits, y_splits)) |
---|
355 | #LOG("GRID_TILES: %s" % self.grid_tiles) # DEBUG |
---|
356 | |
---|
357 | def active_window(self): |
---|
358 | return self.windows_by_id[self.active] |
---|
359 | |
---|
360 | def window_action(self, action, direction): |
---|
361 | window = self.active_window() |
---|
362 | original_window_geometry = window.geometry() |
---|
363 | LOG("Starting geometry = %s" % (original_window_geometry, )) |
---|
364 | _, window_geometry = min([(original_window_geometry.location_size_difference_squared(g), g) for g in self.grid_tiles]) |
---|
365 | LOG("Snapped geometry = %s" % (window_geometry, )) |
---|
366 | # Need to figure out the window's nearest grid-granular size |
---|
367 | command = (action, direction) |
---|
368 | # Move |
---|
369 | # Only consider cells that overlap the area directly in the direction |
---|
370 | # of the desired motion. This means that a window at the top of one |
---|
371 | # screen, when pushed up, won't move horizontally to another screen |
---|
372 | # that is 'higher'. |
---|
373 | if command == ('move', 'left'): |
---|
374 | grids = [(window_geometry.right_center().distance_squared(g.right_center()) + window_geometry.size_difference_squared(g), g) |
---|
375 | for g in self.grid_tiles if g.nw().X < window_geometry.nw().X and g.se().X < window_geometry.se().X |
---|
376 | and g.nw().Y < window_geometry.se().Y and g.se().Y > window_geometry.nw().Y] |
---|
377 | elif command == ('move', 'right'): |
---|
378 | grids = [(window_geometry.left_center().distance_squared(g.left_center()) + window_geometry.size_difference_squared(g), g) |
---|
379 | for g in self.grid_tiles if g.nw().X > window_geometry.nw().X and g.se().X > window_geometry.se().X |
---|
380 | and g.nw().Y < window_geometry.se().Y and g.se().Y > window_geometry.nw().Y] |
---|
381 | elif command == ('move', 'up'): |
---|
382 | grids = [(window_geometry.bottom_center().distance_squared(g.bottom_center()) + window_geometry.size_difference_squared(g), g) |
---|
383 | for g in self.grid_tiles if g.nw().Y < window_geometry.nw().Y and g.se().Y < window_geometry.se().Y |
---|
384 | and g.nw().X < window_geometry.se().X and g.se().X > window_geometry.nw().X] |
---|
385 | elif command == ('move', 'down'): |
---|
386 | grids = [(window_geometry.top_center().distance_squared(g.top_center()) + window_geometry.size_difference_squared(g), g) |
---|
387 | for g in self.grid_tiles if g.nw().Y > window_geometry.nw().Y and g.se().Y > window_geometry.se().Y |
---|
388 | and g.nw().X < window_geometry.se().X and g.se().X > window_geometry.nw().X] |
---|
389 | # Grow |
---|
390 | elif command == ('grow', 'left'): |
---|
391 | grids = [(window_geometry.X - g.X, g) for g in self.grid_tiles if g.H == window_geometry.H and g.W > window_geometry.W and g.se() == window_geometry.se()] |
---|
392 | elif command == ('grow', 'right'): |
---|
393 | grids = [(g.se().X - window_geometry.se().X, g) for g in self.grid_tiles if g.H == window_geometry.H and g.W > window_geometry.W and g.nw() == window_geometry.nw()] |
---|
394 | elif command == ('grow', 'up'): |
---|
395 | grids = [(window_geometry.Y - g.Y, g) for g in self.grid_tiles if g.H > window_geometry.H and g.W == window_geometry.W and g.se() == window_geometry.se()] |
---|
396 | elif command == ('grow', 'down'): |
---|
397 | grids = [(g.se().Y - window_geometry.se().Y, g) for g in self.grid_tiles if g.H > window_geometry.H and g.W == window_geometry.W and g.nw() == window_geometry.nw()] |
---|
398 | # Shrink |
---|
399 | elif command == ('shrink', 'left'): |
---|
400 | grids = [(window_geometry.se().X - g.se().X, g) for g in self.grid_tiles if g.H == window_geometry.H and g.W < window_geometry.W and g.nw() == window_geometry.nw()] |
---|
401 | elif command == ('shrink', 'right'): |
---|
402 | grids = [(g.X - window_geometry.X, g) for g in self.grid_tiles if g.H == window_geometry.H and g.W < window_geometry.W and g.se() == window_geometry.se()] |
---|
403 | elif command == ('shrink', 'up'): |
---|
404 | grids = [(window_geometry.se().Y - g.se().Y, g) for g in self.grid_tiles if g.H < window_geometry.H and g.W == window_geometry.W and g.nw() == window_geometry.nw()] |
---|
405 | elif command == ('shrink', 'down'): |
---|
406 | grids = [(g.Y - window_geometry.Y, g) for g in self.grid_tiles if g.H < window_geometry.H and g.W == window_geometry.W and g.se() == window_geometry.se()] |
---|
407 | # Snap |
---|
408 | elif command == ('snap', 'here'): |
---|
409 | grids = [(window_geometry.location_size_difference_squared(g), g) for g in self.grid_tiles] |
---|
410 | else: |
---|
411 | raise Exception("Bad command %s %s" % (action, direction)) |
---|
412 | |
---|
413 | if not grids: |
---|
414 | LOG("No target identified, finding closest tile.") |
---|
415 | grids = [(window_geometry.difference_squared(g), g) for g in self.grid_tiles] |
---|
416 | else: |
---|
417 | LOG("Sorted qualified grids: %s" % sorted(grids)) |
---|
418 | _difference, grid = min(grids) |
---|
419 | window.set_geometry(grid) |
---|
420 | |
---|
421 | |
---|
422 | def main(argv): |
---|
423 | parser = argparse.ArgumentParser() |
---|
424 | parser.add_argument('action', choices=['move', 'grow', 'shrink', 'snap']) |
---|
425 | parser.add_argument('direction', choices=['left', 'right', 'up', 'down', 'here']) |
---|
426 | args = parser.parse_args(argv[1:]) |
---|
427 | |
---|
428 | LOG("start %s %s" % (args.action, args.direction)) |
---|
429 | try: |
---|
430 | controller = Controller() |
---|
431 | controller.window_action(args.action, args.direction) |
---|
432 | except Exception as error: |
---|
433 | LOG("ERROR: %s" % error) |
---|
434 | LOG(traceback.format_exc()) |
---|
435 | raise |
---|
436 | LOG("end %s %s" % (args.action, args.direction)) |
---|
437 | |
---|
438 | return 0 |
---|
439 | |
---|
440 | |
---|
441 | if __name__ == '__main__': |
---|
442 | sys.exit(main(sys.argv)) |
---|